Hazardous Exhaust – Discharge Options

Presented by: Bruce E. Appel, P.E.

Principal

Cator, Ruma & Associates, Co.

Mech./Elec. Consulting Engineers

1550 Dover Street, Suite Two

Lakewood, CO 80215-3132

303/232-6200

Introduction

- This Presentation is Oriented Toward Larger Laboratories, Manifolded Systems.
- Review Design Criteria for Fume/ Hazardous Exhaust.
- Discuss Design Challenges.
- Discuss Design Tools for Mitigating the Fume Hazards to Maintenance Personnel and Building Occupants.
- Discuss Design Solutions We Have Used Successfully.

Factors Affecting the Proper Discharge of Hazardous Exhaust

- Stack/Intake Separation.
- Stack Height.
- Stack Height Plus Momentum.
- Momentum =
 Density x Volumetric Flow x Velocity

Due to Architectural Limitations, the Plume Momentum is often the Design Parameter Within the Engineer's Control.

Design Criteria

Stack Height Minimums.

NFPA 45 - 10 feet above roof

AIHA Standard Z9.5 - 10 feet above roof

Stack Exit Velocities.

ASHRAE (2001, Chapter 44) –

2,000 fpm to 4,000 fpm

AIHA Standard Z9.5 - 3,000 fpm (min.)

Minimum Separation Distance.

1997 Uniform Mechanical Code (UMC) – 10 feet between outlet and intake (unless 3 feet above intake).

Design Challenge

■ Maintain Adequate Discharge Velocity with Variable Flow Exhaust.

Design Tools Available

- ASHRAE Handbook Chapter 16,
 2001 Handbook and Chapter 44 of
 2003 Handbook.
- Wind Study
 - Computer Modeling
 - Built-Up Model

CU Porter Biosciences – Wind Study

Exhaust Discharge –

Variable Flow Design/Constant Discharge

- □ Option #1 Bypass at the Fan Inlet
 - Design Considerations

- » Higher Momentum
- »Extra Fan Energy at Part Load of Plume
- »Good Dilution of Effluent »Fan Costs

Exhaust Discharge – Variable Flow Design/Variable Discharge

- Option #2 Discharge Damper at the Stack
 - -Design Considerations
 - »Fan Savings at Part Load
 - »Less Momentum
 - » Damper is Large (Requires Structural Support)
 - » Requires Damper Control

Exhaust Fan Discharge Damper

University of Colorado – Porter **Biosciences MCDB** Laboratory

CU Porter Biosciences – Fan Discharge Dampers

Energy Savings and Payback

- 40 HP Motor Operating at 70% of Full Load Saves 172,000 kwh/year
- At \$0.05/kw, Annual Savings are \$8,600/year Compared to a Bypass Fan

Summary

- Design Criteria was Reviewed
- Exhaust Discharge Design Options
- Advantages/Disadvantages of Each Were Reviewed